Impaired skeletal formation in mice overexpressing DMP1
نویسندگان
چکیده
منابع مشابه
Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice.
We describe the effects of the overexpression of noggin, a bone morphogenetic protein (BMP) inhibitor, on osteoblast differentiation and bone formation. Cells of the osteoblast and chondrocyte lineages, as well as bone marrow macrophages, showed intense beta-gal histo- or cytostaining in adult noggin+/- mice that had a LacZ transgene inserted at the site of noggin deletion. Despite identical BM...
متن کاملImpaired Baroreflex Function in Mice Overexpressing Alpha-Synuclein
Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson's disease (PD). In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn), a genetic mouse model of synucleinopathy. The beat-to-beat ...
متن کاملVacuolar degeneration of skeletal muscle in transgenic mice overexpressing ORP150.
ORP150 is a hypoxic stress-induced protein located in the endoplasmic reticulum. Transgenic mice overexpressing ORP150 (ORP-Tg) exhibit vacuolar degeneration in the heart. To determine whether vacuolization is present in skeletal muscle, we pathologically examined ORP-Tg mice. After 60 days of age, severe vacuolization was found in the soleus muscles of the hind legs of the ORP-Tg mice. Immunoh...
متن کاملImpaired Bone Formation in Pdia3 Deficient Mice
1α,25-Dihydroxyvitamin D3 [1α,25(OH)2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3) mediates 1α,25(OH)2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in...
متن کاملImpaired Skeletal Muscle Repair after Ischemia-Reperfusion Injury in Mice
Ischemia/reperfusion (IR) injury can induce skeletal muscle fibre death and subsequent regeneration. By 14 days, absolute and specific maximal forces and fatigue resistance in ischemic/reperfused soleus muscles were still reduced (-89%, -81%, and -75%, resp.) as compared to control muscles (P < .05). The decrease of these parameters in ischemic/reperfused muscle was much greater than that of my...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Orthopedic Research and Reviews
سال: 2009
ISSN: 1179-1462
DOI: 10.2147/orr.s6278